翻訳と辞書
Words near each other
・ Legendre function
・ Legendre polynomials
・ Legendre pseudospectral method
・ Legendre rational functions
・ Legendre relation
・ Legendre sieve
・ Legendre symbol
・ Legendre transformation
・ Legendre wavelet
・ Legendre's conjecture
・ Legendre's constant
・ Legendre's equation
・ Legendre's formula
・ Legendre's theorem on spherical triangles
・ Legendre's three-square theorem
Legendre–Clebsch condition
・ Legendrian knot
・ Legends (Above the Law album)
・ Legends (Beverley Craven album)
・ Legends (Bob Catley album)
・ Legends (book)
・ Legends (comics)
・ Legends (Dvořák)
・ Legends (Five Star album)
・ Legends (PBM)
・ Legends (Transformers)
・ Legends (TV series)
・ Legends about Theoderic the Great
・ Legends and myths regarding RMS Titanic
・ Legends and Tales of the Pine Barrens


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Legendre–Clebsch condition : ウィキペディア英語版
Legendre–Clebsch condition
In the calculus of variations the Legendre–Clebsch condition is a second-order condition which a solution of the Euler–Lagrange equation must satisfy in order to be a maximum (and not a minimum or another kind of extremal).
For the problem of maximizing
: \int_^ L(t,x,x')\, dt . \,
the condition is
:0 \ge L_(t,x(t),x'(t)), \, \forall t \in()
==Generalized Legendre-Clebsch==

In optimal control, the situation is more complicated because of the possibility of a singular solution. The generalized Legendre–Clebsch condition,〔H.M. Robbins, A generalized Legendre-Clebsch condition for the singular cases of optimal control, IBM Journal of Research and Development, 1967〕 also known as convexity, is a sufficient condition for local optimality such that when the linear sensitivity of the Hamiltonian to changes in u is zero, i.e.,
: \frac = 0
The Hessian of the Hamiltonian is positive definite along the trajectory of the solution:
: \frac > 0
In words, the generalized LC condition guarantees that over a singular arc, the Hamiltonian is minimized.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Legendre–Clebsch condition」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.